94 research outputs found

    Simulation of Deformation-induced Martensite Formation and its Influence on the Resonant Behavior in the Very High Cycle Fatigue (VHCF) Regime

    Get PDF
    AbstractThe exploration of fatigue mechanisms in the VHCF regime is gaining importance since many components have to withstand a very high number of loading cycles due to high frequency or long product life. In this regime, particular attention is paid to the period of fatigue crack initiation and thus the localization of plastic deformation. The resonant behavior of a metastable austenitic stainless steel (AISI304) is studied experimentally in the VHCF regime and shows a distinct transient characteristic. The major contribution of this work is to obtain a physically-based understanding of this characteristic by modeling the underlying microstructural mechanisms and their influence on the resonant behavior. Microscopic examinations indicate that AISI304 undergoes deformation-induced martensite formation starting mostly at intersecting shear bands during fatigue. Therefore, a microstructural shear band model [Hilgendorff et al. (2013)] is extended regarding the mechanism of deformation-induced martensite formation. The model accounts for the microstructural mechanisms occurring in shear bands as documented by experimental results, and nucleation of martensite is assumed to occur at intersecting shear bands following the Olsen-Cohen nucleation model (1972) in combination with the Bogers-Burgers mechanism (1964). The simulation model is numerically solved using the two-dimensional (2-D) boundary element method. By using this method, a 2-D microstructure can be modeled considering grain orientations as well as individual anisotropic elastic properties in each grain. The resonant behavior is characterized by evaluating the force-displacement hysteresis loop. Results show that plastic deformation in shear bands and deformation-induced martensite formation have a major impact on the resonant behavior in the very high cycle fatigue (VHCF) regime

    C/EBPβ-Thr217 Phosphorylation Signaling Contributes to the Development of Lung Injury and Fibrosis in Mice

    Get PDF
    mice are refractory to Bleomycin-induced lung fibrosis the molecular mechanisms remain unknown. Here we show that blocking the ribosomal S-6 kinase (RSK) phosphorylation of the CCAAT/Enhancer Binding Protein (C/EBP)-β on Thr217 (a RSK phosphoacceptor) with either a single point mutation (Ala217), dominant negative transgene or a blocking peptide containing the mutated phosphoacceptor ameliorates the progression of lung injury and fibrosis induced by Bleomycin in mice. mice with a cell permeant, C/EBPβ peptide that inhibits phosphorylation of C/EBPβ on Thr217 (40 µg instilled intracheally on day-2 and day-6 after the single Bleomycin dose) also blocked the progression of lung injury and fibrosis induced by Bleomycin. Phosphorylation of human C/EBPβ on Thr266 (human homologue phosphoacceptor) was induced in collagen-activated human lung fibroblasts in culture as well as in activated lung fibroblasts in situ in lungs of patients with severe lung fibrosis but not in control lungs, suggesting that this signaling pathway may be also relevant in human lung injury and fibrosis.These data suggest that the RSK-C/EBPβ phosphorylation pathway may contribute to the development of lung injury and fibrosis

    Innate Immune Deficiency of Extremely Premature Neonates Can Be Reversed by Interferon-γ

    Get PDF
    Background: Bacterial sepsis is a major threat in neonates born prematurely, and is associated with elevated morbidity and mortality. Little is known on the innate immune response to bacteria among extremely premature infants. Methodology/Principal Findings: We compared innate immune functions to bacteria commonly causing sepsis in 21 infants of less than 28 wks of gestational age, 24 infants born between 28 and 32 wks of gestational age, 25 term newborns and 20 healthy adults. Levels of surface expression of innate immune receptors (CD14, TLR2, TLR4, and MD-2) for Grampositive and Gram-negative bacteria were measured in cord blood leukocytes at the time of birth. The cytokine response to bacteria of those leukocytes as well as plasma-dependent opsonophagocytosis of bacteria by target leukocytes was also measured in the presence or absence of interferon-c. Leukocytes from extremely premature infants expressed very low levels of receptors important for bacterial recognition. Leukocyte inflammatory responses to bacteria and opsonophagocytic activity of plasma from premature infants were also severely impaired compared to term newborns or adults. These innate immune defects could be corrected when blood from premature infants was incubated ex vivo 12 hrs with interferon-c. Conclusion/Significance: Premature infants display markedly impaired innate immune functions, which likely account for their propensity to develop bacterial sepsis during the neonatal period. The fetal innate immune response progressivel

    Pulmonary vascular research institute GoDeep: a meta-registry merging deep phenotyping datafrom international PH reference centers

    Get PDF
    The Pulmonary Vascular Research Institute GoDeep meta-registry is a collaboration of pulmonary hypertension (PH) reference centers across the globe. Merging worldwide PH data in a central meta-registry to allow advanced analysis of the heterogeneity of PH and its groups/subgroups on a worldwide geographical, ethnical, and etiological landscape (ClinTrial. gov NCT05329714). Retrospective and prospective PH patient data (diagnosis based on catheterization; individuals with exclusion of PH are included as a comparator group) are mapped to a common clinical parameter set of more than 350 items, anonymized and electronically exported to a central server. Use and access is decided by the GoDeep steering board, where each center has one vote. As of April 2022, GoDeep comprised 15,742 individuals with 1.9 million data points from eight PH centers. Geographic distribution comprises 3990 enrollees (25%) from America and 11,752 (75%) from Europe. Eighty-nine perecent were diagnosed with PH and 11% were classified as not PH and provided a comparator group. The retrospective observation period is an average of 3.5 years (standard error of the mean 0.04), with 1159 PH patients followed for over 10 years. Pulmonary arterial hypertension represents the largest PH group (42.6%), followed by Group 2 (21.7%), Group 3 (17.3%), Group 4 (15.2%), and Group 5 (3.3%). The age distribution spans several decades, with patients 60 years or older comprising 60%. The majority of patients met an intermediate risk profile upon diagnosis. Data entry from a further six centers is ongoing, and negotiations with >10 centers worldwide have commenced. Using electronic interface-based automated retrospective and prospective data transfer, GoDeep aims to provide in-depth epidemiological and etiological understanding of PH and its various groups/subgroups on a global scale, offering insights for improved management
    • …
    corecore